Parallelization strategy based on RenderScript
reductions

Francisco Rafael Suarez Ruiz, Jesis Antonio Alvarez Cedillo and Alfonso
Fernandez Vazquez

Instituto Politécnico Nacional

franciscorafaelsr@gmail.com, jaalvarezQipn.mx, alfonso.fernandez.v@gmail.com

Abstract. RenderScript is a set of tools designed by Google to sup-
port parallel processing on mobile devices with Android. This tools were
designed to run on different processing components such as Central Pro-
cessing Units (CPU), Digital Signal Processors (DSP) and Graphics Pro-
cessing Units (GPU) and it allows portability between mobile electronics
devices such as Tablets and Smartphones. RenderScript has a runtime
that decides where and how to execute commands list in parallel, it dif-
fers in coding and abstraction problem from others platforms used as
Open Computing Language (OpenCL) and Compute Unified Device Ar-
chitecture (CUDA). However, in this new parallelization paradigm kernel
is not optimized for a specific architecture. There are not clear strategies
for reduction algorithms implementation. For this reason this paper pro-
poses several strategies for reduction algorithms implementation between
vectors using RenderScript.

1 Introduction

A vector processor is a processor that can compute an integer value in an in-
struction, usually a vector instruction is equivalent to execution of a complete
instruction at a loop, where each iteration works on each individual component of
the vector. Vector memory operations are better than scalar operations because:

Each result is independent.

A single vector instruction replaces many scalar instructions.

They require a memory access pattern with a fixed access (adjacent).
In the problem is avoided a jumping in control loop.

Operations running more faster.

U W=

In this paper we explain two strategies for running a binary vector reduction for
mobile devices (Smartphones and Tablets) using RenderScript.
1.1 RenderScript

Some applications can be developed using personal purpose processing such as
computer vision and image processing. The applications that use RenderScript
running inside the virtual machine Android, so Java application programming

pp. 137-146; rec. 2014-05-16; acc. 2014-07-07 137 Research in Computing Science 78 (2014)

Francisco Rafael Suarez Ruiz, Jesus Antonio Alvarez Cedillo and Alfonso Ferndandez Vazquez

interface is used to management resources and regulates the control life of pro-
grams of the kernel [4].

RenderScript represents a set of tools and a high level language for parallel
computation intensive processing on Android devices, combined with sequential
programming generates profits and optimize processes running in the execution
model.

RenderScript makes work distribution across different threads and it opti-
mizes use of all available processors on the device, it focus on the high perfor-
mance applications on GPU, DSP, CPU and multiple cores. The RenderScript
algorithms are perfectly balanced when it are processing, so any general-purpose
application may be made and implemented widely using the maximal of resources
on mobile device.

RenderScript Programming is based on next stages:

1. High performance kernels, all source code is written with a source code sup-
ported with C99 language.
2. An interface application (API) developed with Java,

1.2 FilterScript

FilterScript is a subset of RenderScript which contains restrictions to work in
a variety of processors. In FilterScript the pointers are not allowed, so you
can not read the memory directly and have to use API access functions of
RenderScript[1].

1.3 Execution Model

The mobile device architecture has major differences with other traditional par-
allel systems such as a desktop system or a system for high availability.

~12GB/s

~70GFLOPs ~20GFLOPs

Fig.1. Mobile Device Arquitecture

Research in Computing Science 78 (2014) 138

Parallelization Strategy Based on RenderScript Reductions

Communication between the CPU and the GPU is done through the DDR,

LPDDR or MDDR memory (it’s a type of synchronous DRAM special double
precision for mobile devices) at 12Gb/s and an instruction set supports up to 70
GFLOPS on the GPU and up to 20 GFLOPS on the CPU. See Figure 1.

RenderScript was developed on the Low Level Virtual Manchine paradigm

(LLVM). The execution model of an application in FilterScript or RenderScript
shown in Figure 2.

[\

2

A A
RenderScript Runtime
“’”‘7 - — > Libee GPU/DSPs
Saipetirs T
e ll‘. EEN
; EEEN
Read /Write
; EEEE
~70 GFLOPS
> ~10Gh/s
ead /W
Y vVE\WL-'\
Android FrameWork v !
Reflectd Laver Multicores CPUs
Cames
Jr—
files ~20 GFLOPS
i MOBILE HARDWARE
APK PROCESSORS

Fig. 2. Execution Model RenderScript based in [2]

This operation is as follows:

. The execution program list is made in a language based on ¢99, is compiled

with an intermediate format.

(a) Encapsulated source code or KERNEL, is processed and creates a binary
list not architecture dependent.

(b) A special routine to compile binary list for one or more processors.

(c) Special encapsulates are integrated according to the programmer needs
for some common operations.

. JAVA classes are created automatically by Development Kit.
. Administration and enforcement resources are controlled by Java application

interfaces.

. They are integrate with the virtual machine, where are adding the executable

binary and checklist as Java application.

Related work

In the literature, there are some proposals of how to code in RenderScript using
other platforms of heterogeneous computing, however, not directly pose a pro-
gramming strategy where are take advantage of all RenderScript tools, is the

139 Research in Computing Science 78 (2014)

Francisco Rafael Suarez Ruiz, Jesus Antonio Alvarez Cedillo and Alfonso Ferndandez Vizquez

case of [1], where the authors propose to use Heterogeneous Image Processing
Acceleration (HIPA) to generate a image processing Kernel and to adapting to
the RenderScript structure. The second proposal in [3], it shown the coding of a
software implementation for translate OpenCl commands from to RenderScript.

After of the review of previous works that use applications and RenderScript
code generation or strategies, are show that is not possible automatically export
all the characteristics of a heterogeneous platforms and RenderScript computing
resources are not optimally utilized; in [4] shown an alternative to programming
high performance applications on android devices and show the Android archi-
tecture operation in APARAPI GPU, the authors focused their research on a
performance study of the CPU and GPU using OpenCL on a GPU. the experi-
ments were carried out in a Nexus 10 A15 CPU Dual-core, Quad core Mali-T604
GPU, and 2GB RAM.

Some algorithms require from an input data to define the number of elements
of array reduced output, examples of these operations are: average cumulative
sum, maximum, minimum, etc. A such operations within the parallel processing
are called reduction operations.

There is a related work to the performance tests introduced by [5], they
shown a the code that work on a HTC Desire smartphone. Dalvik Java source
code was tested, the test consisted of implementation a set of twelve programs
for Android platform using native code and Java, to evaluate the algorithm they
found that only three applications run faster on Dalvik Java code and found
performance issues.

In FilterScript and RenderScript, reduction operations used is not easy be-
cause a kernel implementation requires that length of input data should be equal
to output data. Another important limitation is that is not possible to control
over the numbers of threads that were invoked and this can only be changed by
varying length characteristic of data input and output. Another paper presented
by [7] performed additional performance tests where are comparing Android and
Windows Mobile vs Java ME. They demonstrated where performance is better
in Android. By other side, in [6] demonstrated a work where the native code is
most efficient to develop high performance applications.

Analyzing existing studies have highlighted the need to attract new program-
ming strategies for mobile parallel computing platform that supports general
purpose programming; there are very few studies that show use of FilterScript
or RenderScript, much less computation strategies vector on a platform of lim-
ited storing on Android Smartphones or Tablets, for this reason in this paper
we focus to show two strategies for computing vector reductions in RenderScript
implementations.

Research in Computing Science 78 (2014) 140

1

Parallelization Strategy Based on RenderScript Reductions

intsize ;

void root(int32 t xv_out, uint32_ t x,uint32_t y) {
if (x < divisor)

v_out|[y] += v_out[sizey |;

Listing 1.1. RenderScript kernel source code

intsize ;
rs_allocation input;

s float _ _attribute_ ((kermnel)) root(uint32 t x) {

1

if(x <_size)

; return rsGetElementAt float (input ,x)+rsGetElementAt float (

input , size — x) ;

else
return 0;

}

Listing 1.2. Filterscript kernel source code

3 Solution proposal

RenderScript Lists exemplify programming strategies designed to use application
interface for versions Android 4.1 in onwards. To solve reduction operations in
RenderScript we have two possible strategies, these are exemplified with the
cumulative sum of a vector of floating values on RenderScript and FilterScript
version 2.2

3.1 First Strategy: RenderScript

The first strategy is to limit memory locations on threads running through iden-
tification number of thread.
Advantages:

1. Were performed on the same memory locations.
2. Ease of abstraction
3. Kernel in RenderScript be called recursively until the stop condition.

Disadvantages:
1. Threads are wasted.

The Kernel in RenderScript shown in Listing 1.2.
The Kernel in FilterScript shown in Listing 1.3.

141 Research in Computing Science 78 (2014)

Francisco Rafael Suarez Ruiz, Jesus Antonio Alvarez Cedillo and Alfonso Ferndandez Vazquez

1 float _ _attribute__ ((kermel)) root(const float2 v_in,uint32_ t

x) {

> return v_in[0]+v_in[1];

Listing 1.3. Behavior of FilterScript and RenderScript kernel

3.2 Second Strategy: RenderScript and FilterScript

The second strategy is to use data structures provided by FilterScript and Ren-
derScript. Is allow that input and output structures are the same size but can
be of different type.

Advantages:

1. Invoked all threads are used.
2. Entire allocated memory is occupied.

Disadvantages:

1. Is necessary to change memory size for each reduction.
2. Algorithm must be adapted to the data structures.

In this case Listing 1.3 shows the behavior of FilterScript and RenderScript
kernel

4 Results

With strategies proposed in the previous section, Mercator Series (equation 1)
was implemented to calculate natural logarithm. This example was chosen be-
cause computation powers in the GPU have high computational complexity.

(~1)"

In(l+z) = i ——a" (1)

n
This strategies was proved on a Tablet device with follow specifications:

Device: Tablet Acer Iconia Al
RAM Memory: 1GB RAM DDR3
Internal ~ Memory: 16 GB

Chipset: MediaTek MT8125

CPU: quad-core 1.2GHz
0OS: Android OS, v 4.2 Jelly Bean
GPU: PowerVR SGX544MP3

Listing 1.4 shows the Kernel where is calculating the summation values.

For design of this kernel is used the second strategy proposed for implemen-
tation. Table 1 shows the average results.

It shows E1 as Strategy 1 and E2 as Strategy 2.

Research in Computing Science 78 (2014) 142

-

%)

Parallelization Strategy Based on RenderScript Reductions

float2 _ _attribute__ ((kernel)) root(uint32_ t x) {
float2 result;

5 int id = x+1;

result [0] = alter (id)#*(pown(n,id)/id);

5 id = totalx;

result [1] = alter (id)=*(pown(n,id)/id);

return result;

Listing 1.4. Mercator Kernel

Table 1. Average time results of running.

DATA Dalvik E1l E2

10 7.106161038 9 8

100 50.49752469 45 30
1000 2550 200 307
100000 6502500 20000 10000
1000000 4.22825E+13 15000 8000
1000000 1.78781E+27 12000 11000

Figure 4 shows time results, Figure 3 shows values obtained in the approxi-
mation obtained by Mercator series.

Energy consumption on device maintains a direct relationship with use and
utilization rate of both CPU and GPU.

Table 2 shows resource usage percentage on device, table shows use of a
device with a single core and a PowerVR GPU.

To calculate application consumption, when it is direct current (DC) electric
power output at a certain moment by the product of the potential difference and

1E+28
1E+24
1E+20
1E+16
1E+12 == Dalvik

10000000
10000 —E—El

E2

Fig. 3. Obtained values by Mercator series

143 Research in Computing Science 78 (2014)

Francisco Rafael Suarez Ruiz, Jesus Antonio Alvarez Cedillo and Alfonso Ferndandez Vazquez

2E+27

1,5E427 /r

1E+27

=4 Dalvik
S5E+26 '[e
0 i £
o o
— O

1
1000
100000
1000000
1000000

Fig. 4. Approximation obtained by Mercator series

Table 2. Resource usage percentage on device.

Dalvik E1 E2
CPU GPU CPU GPU CPU GPU
10 40 2 10 40 22 42
100 60 4 12 50 24 45
1000 98 4 12 52 23 50
100000 100 4 15 55 25 48
1000000 100 4 15 55 27 50
1000000 100 4 16 70 28 60

the intensity of current passing through the device. For this reason the power is
proportional to the current and voltage.
Equation 2 shows the corresponding expression

_dw dw dq

=" d—qa =

Where I is the instantaneous value of the current and V is the instantaneous
voltage value.

VI (2)

If I is expressed in amperes and V in volts, P will be expressed in watts (W).
The same definition applies when considering average values for I, V and P.
When the device is a resistor of value R or can calculate the equivalent
resistance of the device, power can also be calculated using Equation 3
V2

P=RI?’=—
R I (3)

DC voltage measured in normal operation is 4.2 Volts, When the calculation
is performed at 100 percent the voltage in inductors (Vdrop) 14mVolts. Energy
consumption by modifying Equation 3 is created equation 4

(Vbat)(Vdrop)

P=
R.

(4)

Research in Computing Science 78 (2014) 144

Parallelization Strategy Based on RenderScript Reductions

Where Vbat is the nominal battery voltage 4.7 volts, Drop is voltage drop,
where the voltage at 100% processor usage was 14 Volts in CPU and 12 GPU
and mVolts. R represents the measurement resistance of 0.041 Ohms. Table 3
shows the final values of the power in Watts.

Table 3. Final values of the power in Watts

pu gpY pu gPY pu

10 0,641951 0,027512 0,160488 0,550244 0,353073
100 0,962927 0,055024 0,192585 0,687805 0,385171
1000 1,57278 0,055024 0,192585 0,715317 0,369122

100000 1,604878 0,055024 0,240732 0,756585 0,40122
1000000 1,604878 0,055024 0,240732 0,756585 0,433317
1000000 1,604878 0,055024 0,25678 0,962927 0,449366

5 Conclusion

RenderScript, Google’s parallel computing platform, is relatively new compared
to other platforms and it continues with constant changes, which has led to its
documentation is not quite complete. In RenderScript new strategies are needed
for the implementation, since there is no control on number of threads to run
like in others tools that have parallel computing platforms. . However, Google’s
platform has premise of being compatible with any number of devices and run the
instruction list the most optimal manner in hardware available on your phone,
also it can get excellent performance comparable to other platforms with the
right programming strategies.

As reviewed in this paper, using RenderScript you can perform a lot of cal-
culations in a short time on mobile devices, this opens the door for algorithms
implementation that were previously inaccessible to these devices, for this reason
scientific computing has a tool that can be of vital importance for algorithms
validation.

References

1. Membarth, R., Reiche, O., Hannig, F., Teich, J., Code generation for embedded
heterogeneous architectures on android, in Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp.1, 6, 2428, March 2014.

2. Pavlov, S., Kazantsev, R., Getting Started with RenderScript on Intel® Ar-
chitecture running the Android* OS. Internet: https://software.intel.com/en-
us/android/articles/getting-started-with-renderscript-on-intel-architecture-
running-the-android-os, Mar 25, 2014 [July 26, 2014].

145 Research in Computing Science 78 (2014)

Francisco Rafael Suarez Ruiz, Jesus Antonio Alvarez Cedillo and Alfonso Ferndandez Vizquez

. ChengYan Yang, Yijui Wu, Liao, S., O2render: An OpenCL to RenderScript trans-
lator for porting across various GPU or CPU, in 2012 IEEE 10th Symposium on
Embedded Systems for Realtime Multimedia (ESTIMedia), pp.67, 74, 1112, Oct.
2012.

. HungShuen Chen, JrYuan Chiou, ChengYan Yang, Yijui Wu, Weichung Hwang,
HaoChien Hung, ShihWei Liao, Design and implementation of high level compute
on Android systems, in 2013 IEEE 11th Symposium on Embedded Systems for
Realtime Multimedia (ESTIMedia), pp.96,104, 34, Oct. 2013.

. C. M. Lin, J. H. Lin, C. R. Dow and C. M. Wen, Benchmark Dalvik and Native Code
for Android System, in 2011 Second International Conference on Innovations in Bio
inspired Computing and Applications (IBICA), Shenzhen, Guangdong, China, 2011.
. Y. H. Lee, P. Chandrian and B. Li, Efficient Java Native Interface for Android Based
Mobile Devices, in 2011 IEEE 10th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom), Changsha, Hunan Provinc
e, P. R. China, 2011.

. T. M. Gronli, J. Hansen and G. Ghinea, Android vs Windows Mobile vs Java ME: a
comparative study of mobile development environments, in Proceedings of the 3rd
International Conference on PErvasive Technologies Related to Assistive Environ-
ments, Samos, Greece, 2010.

Research in Computing Science 78 (2014) 146

	Parallelization strategy based on RenderScript reductions
	1 Introduction
	1.1 RenderScript
	1.2 FilterScript
	1.3 Execution Model

	2 Related work
	3 Solution proposal
	3.1 First Strategy: RenderScript
	3.2 Second Strategy: RenderScript and FilterScript

	4 Results
	5 Conclusion

